实时热搜: 答案说,左导数存在,右导数不存在,为什么

为什么只是右导数存在,左导数不存在?急急急 答案说,左导数存在,右导数不存在,为什么

91条评论 71人喜欢 6836次阅读 366人点赞
为什么只是右导数存在,左导数不存在?急急急 答案说,左导数存在,右导数不存在,为什么 左导右不到首先这个函数在x=1处间断,是不可导的 但右导数,由於lim(x→1+)f(x)=1,根据右导数的定义 y'右=lim(x→1+)[f(x)-f(1)]/(x-1)=(1-2/3)/(1-1) 分子是常数,分母是0,结果为∞,所以右导数不存在

答案说,左导数存在,右导数不存在,为什么函数的左导数是指自变量从左边无限趋近某值时的导数,右导数是指自变量从右边边无限趋近某值时的导数。 研究函数的左导数和右导数是用来函数某点是否存在导数的,因为只有左导数和右导数同时存在并相等时才说导数存在。 关于左导数存在,右导数

为什么此题的右导数不存在 左导数存在为什么此题的右导数不存在 左导数存在就这个第三题反了吧,右导数存在,左导数不存在。

一个导数问题 为什么只能推出右导数存在 左导数不存在 令1-cosh=t,那么很明显t≥0,因为cosh≤1 所以t,也就是1-cosh只能从t大于0的方向趋近于0,不可能从t小于0的方向趋近于0 所以这个式子只能代表右导数,无法确定左导数。

这个结论如何理解?如果左导不等于右导,导数不存...这个结论如何理解?如果左导不等于右导,导数不存在,那前面也不存在处是不是用L-法则求不出导数来?因为你只给了一句话,没有上下文,这问题不清楚,不知道你到底在问什么…

为什么不能求导?我怎么算出来左导数等于右导数函数在x=0处不连续! 可导一定连续,连续不一定可导。

连续未必可导,仅由左导=右导,但不连续的话,导...高手解答。这是课本原话,类似还有2014全书47页上那什么意思?左导数 = 右导数,则函数一定是连续的。事实上,若函数 f 在 x0 的左导数f'-(x0) 存在,则 f(x0-0) = lim(x→x0-)f(x) = lim(x→x0-)(x - x0)*lim(x→x0-)[f(x) - f(x0)]/(x - x0) + f(x0) = 0*f'-(x0) + f(x0) = f(x0), 即 f 在 x0 处左连续;同

为什么只是右导数存在,左导数不存在?急急急首先这个函数在x=1处间断,是不可导的 但右导数,由於lim(x→1+)f(x)=1,根据右导数的定义 y'右=lim(x→1+)[f(x)-f(1)]/(x-1)=(1-2/3)/(1-1) 分子是常数,分母是0,结果为∞,所以右导数不存在

函数怎么才可以判断左导不等于右导(函数不可导)分别求导,然后比较 纯手工打造,希望答案对你有所帮助,请予以好评。 百度知道祝你生活学习愉快,谢谢!!!